ROVNICE
Rovnice si můžeme představit jako váhu, která má pravou a levou stranu. Abychom docílili rovnováhy, musí se pravá strana rovnat straně levé.
Levá strana (L) = Pravá strana (P)
L = P
V matematických rovnicích je tedy úkolem zjistit neznámé číslo, které uvede do rovnováhy pravou a levou stranu rovnice.
Tato neznámá čísla se v rovnicích značí písmeny, nejčastěji se používají: x; y; z. Mohou se však použít jakákoli písmena: a; b; c…
Zvolenému písmenu v rovnici říkáme – NEZNÁMÁ (říkáme: Vypočítej neznámou z rovnice.). Jakmile zjistíme hodnotu neznámé (tedy, které číslo se pod písmenem skrývá), pak je tento výsledek v matematice označen slovním spojením: KOŘEN ROVNICE (říkáme: Kořenem rovnice je x = 5).
Rovnice se tedy skládají:
- z neznámých (označují se písmeny) i spolu s čisly: x; 3y; - 0,5y...
- z čísel: kladná, záporná, celá, desetinná, zlomky...
- a pochopitelně ze znamének (+, -, ., :, =), závorek, mocnin, odmocnin...
Ve chvíli, kdy "poskládáte" rovnici z neznámých a čísel, používá se pro ně označení: ČLENY ROVNICE.
Např.: 3x + 5 = 2x - 7 je rovnice, která má čtyři členy rovnice, které odděluje znaménko plus a mínus (a pochopitelně i =). Všiměte si, že znaménko násobení se nepočítá jako oddělení členů.
Výhodou řešení rovnic je, že se provádí tzv. ZKOUŠKA. Ta ověřuje, zda se opravdu pravá a levá strana rovná. Zjistíme to tak, že kořen rovnice (tedy vypočítané číslo) dosadíme do zadání a tím ověříme, že po vypočítání platí: L = P.
Postupy řešení základních (jednoduchých) rovnic naleznete ZDE
Postup řešení rovnic se zlomky naleznete ZDE
Tři možná řešení lineárních rovnic
Postupy řešení základních (jednoduchých) rovnic naleznete zde:
Postup řešení rovnic se zlomky naleznete zde:
1. Rovnice má JEDNO řešení
Zatím jsme probrali rovnice (minisérie část 1. až 6.), kde se neznámá (tzv. kořen rovnice) rovnala konkrétnímu číslu (kladnému, zápornému, nebo nule).
Vzorové příklady
A. Kořen rovnice - kladné číslo
3x = 33,3 Zk:
x = 33,3 : 3 L: 3x = 3 . 11,1 = 33,3
x = 11,1 P: = 33,3
L = P
B. Kořen rovnice - záporné číslo
-15x - 27 = - 5x + 13 Zk:
-15x + 5x = 13 + 27 L: -15x - 27 = -15 . (-4) - 27 = 60-27=33
- 10x = 40 P: - 5x + 13 = -5 .(-4) + 13 = 20 + 13 = 33
x = 40 : (-10) L = P
x = - 4
C. Kořen rovnice - nula
5x - 3 . (x -7) = 21 Zk.:
5x - 3x + 21 = 21 L: 5x - 3 . (x -7) = 5 . 0 -3 . (0-7) = 0 - 3 . (-7) = 21
2x = 21 - 21 P: = 21
2x = 0 L = P
x = 0 : 2
x = 0
2. Rovnice NEMÁ řešení
Znamená to, že neexistuje žádné číslo, které by po dosazení zajistilo, že se pravá a levá strana budou rovnat (P = L tedy neplatí)
Ukázkový příklad
3x - 24 = 3x + 16 převedeme člen s neznámou na levou stranu a čísla na pravou stranu
3x – 3x = 16 + 24 vypočítáme strany
0x = 40 cokoli vynásobené nulou je vždy nula tedy: 0 . x = 0
0 = 40 tato rovnost neplatí!!! A proto:
Rovnice NEMÁ ŘEŠENÍ!
Vždy platí: Pokud se pravá a levá strana rovnice na závěr výpočtu nebude rovnat – napíšeme, že: ROVNICE NEMÁ ŘEŠENÍ
POZN.: Tím výpočet končí a nedělá se ani žádná zkouška.
Vzorový příklad 1
4x – 2 + 3x = 7x + 6
4x + 3x – 7x = 6 + 2
0x = 8
0 = 8 rovnice nemá řešení
Vzorový příklad 2
- 6x + 12 – 3x = 3. (-3x + 12)
-6x + 12 – 3x = -9x + 36
-6x – 3x + 9x = 36 – 12
0x = 24
0 = 24 rovnice nemá řešení
3. Rovnice má NEKONEČNĚ MNOHO řešení
Znamená to, že do rovnice můžeme dosadit libovolné číslo, a vždy bude platit, že se pravá a levá strana budou rovnat (P = L tedy platí)
Ukázkový příklad
5x – 9 = 5x – 9 převedeme člen s neznámou na levou stranu a čísla na pravou stranu
5x – 5x = -9 + 9 vypočítáme strany
0x = 0 cokoli vynásobené nulou je vždy nula tedy: 0 . x = 0
0 = 0 tato rovnost platí!!! A proto:
Rovnice má NEKONEČNĚ MNOHO ŘEŠENÍ.
Při provádění zkoušky si můžeme zvolit jaké chceme číslo. Velmi výhodné je do zkoušky za neznámou dosadit x = 0
Zk.: Zkouška by pochopitelně vyšla třeba i pro x = 6
L: 5x – 9 = 5 . 0 – 9 = 0 – 9 = -9 L: 5x - 9 = 5 . 6 - 9 = 30 - 9 = 21
P: 5x – 9 = 5 . 0 – 9 = 0 – 9 = -9 P: 5x - 9 = 5 . 6 - 9 = 30 - 9 = 21
L =P L = P
Vzorový příklad
5x – 7x – 21 + 2x = - 12 – 9
5x – 7x + 2x = -12 – 9 + 21
0x = 0
0 = 0 nekonečně mnoho řešení
Zkouška: za neznámou si volím: x = 0
L: 5x – 7x – 21 + 2x = 5 . 0 – 7 . 0 – 21 + 2 . 0 = 0 – 0 – 21 + 0 = - 21
P: -12-9 = - 21
L = P